
Gesture Detection and Reinforcement Learning For
Game Bomb In Hand

Technical Paper for CSCI 527 Final

Zikai Cheng(zikaiche@usc.edu) Jingyi Wang(jwang750@usc.edu) Zunqi(Wilson) Huang(whuang06@usc.edu)

Fanzhe Meng(fanzheme@usc.edu) Yijing Xiao(yijingxi@usc.edu) Jianchen Gao(gaojianc@usc.edu)

Xuetao Sun(xuetaosu@usc.edu)

Abstract—This is the final technical paper for the course CSCI
527 Team Bomb In Hand. Our team designed a bombing game in
which a player can control her/his character by making gestures
in real world. The player is able to hold or throw bombs and fight
against an opponent agent. We achieved that by creating a gesture
recognition pipeline with the existing human body pose detection
framework MediaPipe, followed by a keypoint classification
algorithm. The action logic behind the Non-Player Character
(NPC) is achieved with reinforcement learning, specifically Q-
learning. We are presenting in this paper the related research,
the modifications to the algorithms and our experiments on the
new environment that we create.

Index Terms—Gesture Detection, OpenCV, Openpose, Medi-
aPipe, Reinforcement Learning

GESTURE DETECTION

I. INTRODUCTION

As video games developed, the ways of interaction are deter-
mined, such as mouse and keyboard. We would like to explore
more ways to interact with games through machine learning.
Hand recognition is an interesting and practical problem in
the field of computer vision, as hands play a vital role in our
interaction with the world. The technology to approach the task
has evolved, from the sophisticated heuristics in traditional
methods, to the recent powerful deep learning neural networks.

In recent years the field of object detection has made
amazing progress, and the detection accuracy has advanced
to approach or even exceed the human level. As a sub-
task of object detection, hand recognition also shared such
improvement. The application of gesture detection also has
been adopted in game designs. From simple website games,
to mobile games, to virtual reality games, gesture detection
has brought the unique and holistic experience of games to a
completely new level.

Therefore, we explored this advancement of gesture detec-
tion technology, and utilized it in our game project. Specifi-
cally we experimented with three different frameworks capable
of doing hand detention, namely OpenCV, Openpose, and
MediaPipe. We compared their features, runtime performance
and accuracy, and decided to adopt MediaPipe’s hand keypoint
detector in our architecture. Then we made gesture classifica-
tion based on the keypoint information from the MediaPipe

detector. Players of our game are able to use gestures to control
their characters to complete tasks in the game, in real-time.

Certainly, there are people trying to bring the players
more immersive experiences, like AR and VR, however, a
lot of them rely on additional devices such as headsets and
controllers. We think it may require extra money and time
for players to buy and learn how to use the device. Thus, we
want to free the players’ hand and enable them to control the
character only with their gestures.

Although gesture detection could be a lot more interesting
to experience with hardware such as Kinect and depth camera,
considering the cost of depth camera and the computing power
of most computers, we decided to utilize 2D gesture detection
algorithms on RGB images for our game. Therefore, we are
aiming to provide players with an intuitive and immersive
experience without requiring additional devices and skills. We
would like the gesture detection algorithm to be able to run
on CPUs and real time detection results could be transferred
to the Unity for calculations and operations in the game.

II. RELATED WORKS

A. Traditional method using OpenCV

Before deep learning became the jewel in the crown of
computer vision, the traditional approach for the hand recog-
nition task required complex calculations from strong priors
and physical restrictions to infer which shapes are actually
hands. The resulting algorithm is still likely to be not adaptive
enough to various natural conditions like the light condition.
In addition, depth sensors were usually used for the detection,
as they provide additional information than ordinary cameras.

The traditional gesture detection method using OpenCV
requires four steps: background subtraction, motion detection,
contour extraction and gesture detection [1]. First we need
to separate foreground and background. Here the background
subtraction method uses the concept of running averages.
We look at the particular scene for 30 frames and compute
the running average over the current frame and the previous
frames. The static part of the frame that is not moving is the
background. Then we will subtract the background from the
current frame to capture the foreground object.

1



Fig. 1: OpenCV Gesture Detection Fist and Palm

After obtaining the foreground object, we will use a thresh-
old to detect the hand region. In this way, all the parts in one
frame that belong to the background or parts that are not hand
region will be painted as black. Only the hand region will
remain. This step is called thresholding and motion detection.

The third step is contour extraction. After processing the
frame and marking all the unnecessary parts in the frame as
black, we will get the hand region in the frame. We want to
draw a contour around the hand. When we get the contour of
the hand, we will be able to move to the next step to make
calculations on gesture detection.

The final step of this method is gesture detection. Here
we will find the extreme points on convex hull covering the
the contour of the hand that gives us the furthest euclidean
distance. Then we will find the center of the palm from these
furthest points and plot a circle using the center of palm with
a radius equal to the distance from the center of palm to
the furthest point on the contour. Then we will calculate the
number intersection points on the circle that are also on the
contour of the hand. Then we will be able to find the number
of fingers on the gesture and then determine what the gesture
is.

III. DATA AND ENVIRONMENTS

The data we use are the RGB images in JPG format. They
are people’s selfie pictures taken by the front camera of a
mobile phone, and one or two hands may or may not be

Fig. 2: Contour Box for Gesture Detection [1]

present in each picture. Some illustrations are shown in Figure
3. These data demonstrate the targeting real world scenarios
of our project, which helped us make design decisions and
improve the architecture as a whole.

We used the Unity engine [2] to build the game logic and
interfaces. The gesture detection algorithm described in this
paper is the part that reads in images, and then tries to detect
hand gestures in them. Then the game logic will determine
what to proceed depending on the detection results.

IV. METHODS - OPENPOSE

A. Introduction

Openpose is a human body pose detector framework, pro-
posed in 2018 by the Perceptual Computing Lab of Carnegie
Mellon University [3]. It can jointly detect keypoints of human
bodies, face, hands, and feet, with up to 125 keypoints for
each person, on single images. It is capable of detecting
multiple persons, and doing it in realtime (about 22 FPS) with
a dedicated GPU card like the Nvidia GTX 1080 Ti.

B. Mechanism

Openpose uses a 21-keypoint model for hands, with four
points for each finger plus one for the wrist. (show a figure)
It performs the hand keypoint detection using an architecture
called the Convolutional Pose Machine (CPM). CPMs were
presented in a 2016 paper [4] by the Robotic Institute at CMU.

CPMs are neural networks designed for detecting structured
objects. Structured objects refer to those objects that are
composition of different parts with underlying arrangement
between them. In the case of the hand detection problem,
hands are formulated as a composition of keypoints identifying
palms, knuckles, finger joints, and prints. Human hands are
nimble, as a hand is able to take many different poses.
However, in all these gestures, the position of each part is
somehow physically related to the other parts. There is strong
connection between these keypoints of fingers, given there is
no serious damage with the hand.

CPMs begin with a backbone network to extract features
from input images. The backbone refers to the first layers of

2



Fig. 3: Illustrations of Dataset Images

existing powerful networks trained on a huge dataset, such as
AlexNet, VGG, and ResNet. They are able to extract features
like shapes, texture etc. Then to infer the keypoints, CPMs
consist of a sequence of stages, where each stage generates
confidence maps, which are like heatmaps, for locations of all
parts. Each stage takes as input both image features extracted
by the backbone network and the confidence map created
by its previous stage. Note that here the number of stages
included in a CPM is not related to the number of keypoints
in the problem. Confidence maps of all keypoints, one map
for each keypoint, are created in each single stage. A larger or
smaller number of stages will only affect the execution time
and accuracy of the model. The more stages there are, the
longer runtime and better accuracy is it expected to get.

CMU presented their hand keypoint detector in 2017, in this
paper [5]. The backbone in their architecture is based on the
first layers of pre-trained VGG-19 network [6] up to conv4 4,
with two additional convolutions to produce a 128-channel fea-
ture map. This feature extraction is followed by six sequential
prediction stages. The first stage takes the feature map and
produces a set of 22 confidence maps, and one confidence
map corresponds to each keypoint. The number of confidence
maps is 22 instead of 21 as the number of keypoints, because
one additional map is needed for identifying the background.
It is shown the use of this additional confidence map helps the
model improve accuracy by better distinguishing foreground
objects and the background. Each stage after the first takes the
output confidence maps of the previous stage concatenated by
the feature map as input, and outputs a set of 22 keypoint
confidence maps. The height and width of the feature map
and confidence maps are designed to have a scale factor of
1/8 relative to the input images.

The loss function of each stage is a weighted L2 loss, which
measures the distance between the predicted and ideal confi-
dence map for each keypoint. It is designed to handle missing
keypoint annotations by assigning zero weight to those cases in
the function. Moreover, the total loss is accumulated through
all six prediction stages, so that the training process is provided
appropriate information about these intermediate layers in the
considerably large network. Such design makes the network
model better handle the problem of vanishing gradients. The
problem of vanishing gradients refers to the observation of
big networks, that the more there are intermediate layers in
the network, the greater the magnitude of gradients decrease
in the back propagation process.

C. Evaluation

As the first open-source realtime human pose detection
system, Openpose with no doubt is an art with innovations
and practicalities. However, after thorough exploration of its
hand keypoint detector, we decided not to adopt it in our
architecture. We present the following two reasons.

First, the standalone hand keypoint detector API in Open-
pose requires a region information as input, which should
specify an area a hand would appear. This is not expected to
be our use case, as we should allow our users to present their

3



Fig. 4: Network Architecture of Openpose Hand Keypoint Detector

hands at any region in the camera scene. As an alternative, we
also experimented with the full-functional human body pose
keypoint detector. It does a great job detecting hands when
other parts of the body like the arm and shoulder are in the
scene with the hand. However, it is not able to detect floating
hands where the arm or shoulder is not presented.

After investigation we discovered that it is because when
performing hand detection, Openpose first makes region pro-
posals based on position of identified wrists, arms, and shoul-
ders. It uses the heuristic that hands are connected to these
body parts. Then these proposed candidates are fed to the
hand keypoint detector described above sequentially, where
the correct detections will be generated. Such heuristic makes
sense, but it still conflicts with our aim of a mobile application.
Within the arm-length distance as people hold mobile phones
in their hands, it is unreasonable to ask users to capture a
whole arm just in order to get the hand detected with the
front camera.

Second, the speed performance of Openpose can admittedly
be near real-time, but that requires a machine with a powerful
dedicated graphic card like the Nvidia GTX 1080 Ti. We tested
the runtime of Openpose running on a moderate dedicated
GPU as well as on CPU alone. It runs surprisingly slow on
the laptop CPU. The average runtime that we tested for a
single frame to process with Openpose is 4.3 seconds for CPU
and around 43 milliseconds for GPU. As described before,
our target platform is mobile phones, which generally are
not equipped with powerful computing hardware like GPUs.
Therefore, with the concern about runtime, Openpose should
not be a good choice for us.

V. METHOD - MEDIAPIPE

A. Introduction

MediaPipe is a framework developed by Google to offer
a cross-platform, customizable machine learning solution for
live and streaming media [7]. It consists of several modules
to serve as different tasks, such as the face detection, Iris
detection, hands detection, pose detection, hair segmentation,
motion detection, box tracking, object detection, etc. These
modules can be used on Android, iOS, C++, Python, or
Javascript.

MediaPipe can provide end-to-end fast machine learning
inference to highly accelerate the processing speed even on
common hardware; once built, the unified solution can be

Fig. 5: Openpose Hand Detection Trial 1

Fig. 6: Openpose Hand Detection Trial 2

deployed anywhere; it offers ready-to-use cutting-edge solu-
tions which demonstrates full power of framework; and the
framework and solutions are both under Apache 2.0, free and
open source.

B. Hand Module

In our project, we only use the MediaPipe Hands module
to detect the hand gesture. The algorithm of MediaPipe is first
proposed by Fan Zhang in Google Research [8]. This module
offers the ability to perceive the shape and motion of hands,
and users can deploy it as an important component to further
their own project. For example, it can form the basis for sign
language understanding and hand gesture control.

Normally, real-time hand detection is a challenging com-
puter vision task because hands often occlude themselves or
each other and lack high contrast patterns, but MediaPipe
Hands is a high-fidelity hand and finger tracking solution. This
module achieves real-time performance on a mobile phone,
and even scales to multiple hands, while the other state-of-art
approaches rely mainly on the powerful desktop platform.

4



Fig. 7: MediaPipe Hands Pipeline

MediaPipe Hands machine learning pipeline consists of two
models, which are a palm detection model that operates on
the full image of hand gesture and returns an oriented hand
bounding box, and a hand landmark model that operates on
the cropped image region defined by the palm detector and
returns high-fidelity 3D hand keypoints.

In the second step, the hand landmark model can receives
the cropped hand image generated either from the palm
detection model or based on the hand landmarks identified in
the previous frame, which drastically reduces the need for data
augmentation (e.g. rotation, translation and scale) and instead
allows the network to dedicate most of its capacity towards
coordinate prediction accuracy.

C. Palm Detection

The palm detection model works only on the detection of the
initial hand locations. A single-shot detector model optimized
for mobile real-time uses. The developer has trained a palm
detector instead of a hand detector since estimating bounding
boxes of rigid objects like palms and fists is significantly
simpler than detecting hands with articulated fingers; and the
non-maximum suppression algorithm works well even for two-
hand self-occlusion cases as palms are smaller objects.

Moreover, the number of anchors can be reduced by a
factor of 3-5 because the palm can be modelled using square
bounding boxes, an encoder-decoder feature extractor is used
for big scene context awareness even for small objects, and
we minimize the focal loss during training to support a large
amount of anchors resulting from the high scale variance.
Overall, the palm detector can achieve an average precision
of 95.7% in palm detection.

D. Finger Detection

The second step, hand landmark model, performs precise
keypoint localization of 21 3D hand-knuckle coordinates in-
side the detected hand regions via regression. The model learns
a consistent internal hand pose representation and is robust
even to partially visible hands and self-occlusions.

MediaPipe have manually annotated more than 30,000 real-
world images with these 21 3D coordinates in order to obtain

Fig. 8: MediaPipe Hands Palm Detection

ground truth data, as shown below. To better cover the possible
hand poses and provide additional supervision on the nature of
hand geometry, MediaPipe also render a high-quality synthetic
hand model over various backgrounds and map it to the
corresponding 3D coordinates.

E. MediaPipe ML Pipeline

1) BlazePalm: A palm detector model (called BlazePalm)
that operates on the full image and returns an oriented hand
bounding box.

First, a palm detector is trained instead of a hand detector,
since estimating bounding boxes of rigid objects like palms
and fists is significantly simpler than detecting hands with
articulated fingers. In addition, as palms are smaller objects,
the non-maximum suppression algorithm works well even for
two-hand self-occlusion cases, like handshakes.

5



Fig. 9: MediaPipe Hands Fingers Detection

Fig. 10: Hand landmarks Location and Numbering in Medi-
aPipe Hands

Moreover, palms can be modelled using square bounding
boxes (anchors in ML terminology) ignoring other aspect
ratios, and therefore reducing the number of anchors by a
factor of 3-5. Second, an encoder-decoder feature extractor is
used for bigger scene context awareness even for small objects.
Lastly, the focal loss is minimized during training to support a
large amount of anchors resulting from the high scale variance.

2) Hand Landmark Model: A hand landmark model that
operates on the cropped image region defined by the palm
detector and returns high fidelity 3D hand keypoints.

After the palm detection over the whole image our sub-
sequent hand landmark model performs precise keypoint
localization of 21 3D hand-knuckle coordinates inside the
detected hand regions via regression, that is direct coordinate
prediction.

3) Gesture Recognition: A gesture recognizer that classifies
the previously computed keypoint configuration into a discrete
set of gestures.

First, the state of each finger, e.g. bent or straight, is
determined by the accumulated angles of joints. Then we map
the set of finger states to a set of pre-defined gestures. This
straightforward yet effective technique allows us to estimate
basic static gestures with reasonable quality.

4) Implementation via MediaPipe : With MediaPipe, this
perception pipeline can be built as a directed graph of modular
components, called Calculators. Mediapipe comes with an
extendable set of Calculators to solve tasks like model infer-
ence, media processing algorithms, and data transformations.
Individual calculators like cropping, rendering and neural
network computations can be performed exclusively on the
GPU.

VI. MODIFICATIONS TO THE EXISTING ENVIRONMENT

A. Gesture Classification with MediaPipe

Since Unity needs to take in an integer representing the
type of gesture displayed by the player, we need to classify
the output landmarks from MediaPipe into ‘fist’ (integer 0)
and ‘palm’ (integer 1) in order to pass this integer to Unity.
This classification method is based on the output results of
MediaPipe gesture detection.

The output of MediaPipe has 21 points and each point has
normalized x, y and z coordinates. These 21 points represent
the key landmarks on one hand, from the bottom edge of
the palm to the joints and end points of each finger. For
classification of hand gestures in 2D we just need x and y
coordinates to do the calculations.The output from MediaPipe
is an object including the list of coordinates for each point.
We need to process that output, extract the x and y coordinates
for each point (landmark) and then put these information into
an array.

For each finger on the hand, there is a state assigned to that
finger. Based on the calculations of the relationships between
the key joints on the finger, we will be able to tell if the
finger is open or closed. For this calculation, we calculate the
location of the joints on each finger and the top point of that

6



Fig. 11: MediaPipe Hands Testing: No Hands Detected

Fig. 12: MediaPipe Hands Testing: Fist

Fig. 13: MediaPipe Hands Testing: Palm

finger with respect to the connection point of that finger to the
palm.

For the thumb, if the x coordinate of the tip point is smaller
than the connection point for the left hand, or bigger for the
right hand, then the thumb is in the closed position. Instead the
thumb will be in an open position. For the four fingers, if we
have the y coordinates of the tip point of that finger smaller
than the connection point then that finger is in the closed
position. Otherwise, the finger will be in an open position.

If all the fingers are closed, we will mark the gesture as
‘fist’. This ‘fist’ gesture will be marked as integer 0 and will
be passed to Unity to order the power gaining process before
throwing the bomb. If one or more than one fingers are open,
then we will mark the gesture as ‘palm’. In this case, the
‘palm’ gesture will be marked as 1 and will be passed to
Unity to order the bomb throwing process.

VII. RESULTS AND ANALYSIS

Openpose does not work very well for our game where only
the hand will show up in the camera and not the whole body
of the person. We tested on the Openpose algorithm with only
one hand showing in the frame and we didn’t get output that
satisfies the needs of our game. Also, Openpose runs very slow
on the CPU. Although the Openpose model is well optimized
on the GPU but consider that most computers do not have
GPU installed so we decided to change to another gesture
detection environment and we found MediaPipe.

MediaPipe works very well with computers just installed
with CPU and for frames that just display single hand,
MediaPipe could detect the hand in the frame efficiently. This
satisfies our needs for gesture detection of our game design.

The whole gesture recognition algorithm is tested with our
collected images as well as the live recording of a laptop front
camera. Of the 100 testing images, the algorithm made correct
classification on 92 of them. Figure 5 is some illustrations. It
also runs smoothly on the live stream and is able to maintain
20 FPS. Reviewing the test results, we noticed that the size
or scale of a hand in an image does affect detection accuracy,
while its position in image does not. For example, when a
person stands far away from the camera, his/her hand appears
really small in the picture, then there is a chance the algorithm
is not able to detect it. This should not be a problem for us
since our use scenario is within an arm-length distance.

VIII. LIMITATIONS

There is still room for improvements in this study. First,
this gesture classification process will not have stable detection
results when the player puts his or her hand horizontally with
four fingers pointing toward the x direction or with thumb
pointing toward the y direction. Second, when the player
places his or her hand up side down in the camera, this
classification will not work properly.

In order to fix this problem, we need to identify the
orientation of the hand based on the coordinates of the key
landmarks on the palm and do a matrix multiplication to rotate
and transform the coordinates of the 21 points on the hand.

7



This process will make the four fingers pointing upwards
in the y direction. In this way, we will be able to make
generalized classification on the gestures without considering
multiple types of hand orientations.

IX. CONCLUSION AND FUTURE WORK

Overall, we utilized the gesture detection techniques into
our own game project. First, we tried to use OpenCV and
Ppenpose for gesture detection, but then found that they cannot
give good performance due to some limitations, so we decided
to adopt MediaPipe. We use the MediaPipe Hands module in
MediaPipe project to recognize two classification of gestures,
which are fist or palm, and archives the accuracy of 92% given
100 testing images.

For the future work, we plan to refine our project to increase
the accuracy of the gesture classification detection; meanwhile,
we will try to build better connections between the gesture
detection and unity.

REINFORCEMENT LEARNING

I. INTRODUCTION

Reinforcement learning is a branch of machine learning to
study how intelligent agents take action to maximize their
rewards in a known or even unknown environment. It is widely
used in game design because the problem it solves is exactly
what agents in games do, taking actions to achieve some
goal in a given environment. Among different approaches
in reinforcement learning, Q-learning is a basic but effective
algorithm to learn the value of an action in a particular state. It
identifies an optimal policy given any finite Markov decision
process, by computing the expected rewards for an action in
a given state.

We chose to use Q-learning to implement the action logic
behind the opponent agent in Bomb in Hand. The game has a
finite and discrete map, and the agent has an explicit goal of
surviving from player’s bombs. It can be well formulated into
a Q-learning model as follows.

II. Q-LEARNING MODEL

In our game, the Non-Player Character (NPC) will move
to avoid getting hit by the player’s bombs and try to avoid
falling off the cliff boundary or holes (caused by the player’s
bombs). To add more heuristic to the movement of NPC and
avoid the NPC from staying at the optimal location without
any movements, we add some random movements to the NPC
while at the same time the NPC will follow the optimal path
to avoid getting hit by the bomb from the player and avoid
falling off the battlefield.

The Q-Learning we adopt uses the Bellman equation, which
is shown in Figure 14. In this equation, the NPC will take the
old Q value from the Q table, multiplied by a learning rate,
and learn from the updated reward and also the optimum future
reward with a discount factor. The learning rate α ranges from
0 to 1.0. The discount factor γ ranges from 0 to 1.0. We tried
multiple learning rates and discount factors on the NPC. In
order to minimize the chance of NPC from falling off the

holes and upper cliff boundary, we chose a learning rate α of
1.0 so that the NPC will learn fully from the updated reward,
especially when a battlefield location has been changed to a
hole after reward updates. We also chose a discount rate γ
of 0 so that the NPC will only follow the reward table to
determine the optimal path. We also assign a random explore
rate of 10% which means 10% of the time the NPC will move
without following the optimal path, adding more heuristic to
the game.

A. Q Table

The Q Table is a state action table. For our game, the states
represent the location of the NPC in each round of the game
and the actions represent the movements the NPC will possibly
take for each round. There are 4 grids in each row and 5 grids
in each column so there are 5x4=20 states available. For each
state the NPC will have four actions to choose from. These
actions are going UP, DOWN, LEFT and RIGHT. Therefore,
the Q table will have 20 states and 4 actions for each state.
Example of a Q table is shown in below.

B. Grid Indexing

In the Q-Learning algorithm, the grid indexing systems in
Q table and in Unity are shown in Figure 16. The indexing for
Q table is similar to the array indexing in a two-dimensional
array. Q table needs to match each grid location to a state
and will need to stretch the whole table into one list of states.
Therefore in Q table the grids are indexed using strings with
the first character representing the row number and the second
character representing the column number. The grid indexing
in Unity is further simplified to integers and each time when
a grid on the battlefield is eliminated by a bomb, Unity will
pass the grid index to the Q Learning algorithm directly for
the reward table updates.

C. Reward Assignment and Updates

For each round of the game, the reward table will be updated
based on the new situation on the battlefield and the NPC will
run the Q learning algorithm to figure out the destination to
go to and the optimal path to take. The Q learning algorithm
helps the NPC figure out the optimal path based on information
about NPC location, player location and hole location. The
destination of the NPC for each round is the grid with the
largest number of rewards in the whole grid.

The reward table is updated based on the player location
in the opposite battlefield, the distance of the NPC’s location
to the upper free boundary of the battlefield and the distance
to the center of battlefield. Since the player will throw bombs
in the up front direction to the NPC’s battlefield, the NPC
will need to avoid staying in the same column as the player.
The further away the NPC stays from the same column with
the player, the higher the rewards get and this reward is 100
points/step, meaning if the NPC stays 1 step away from the
same column as the player, the reward will go up 100 points in
the reward table. In addition, the NPC needs to stay away from
the upper free boundary of the battlefield, and this reward is 40

8



Fig. 14: Bellman Equation for Q-learning

Fig. 15: Q Table Example

(a) in Q table (b) in Unity

Fig. 16: Grid Indexing Systems

points/step, meaning the NPC will get 40 points per step if the
NPC stays away from the upper free boundary. Also, since it is
more likely for the bomb to land in the middle of the battlefield
compared to the upper and lower edges, NPC will get higher
rewards by staying away from the center of the battlefield and
this reward increment is 20 points per step. In order to prevent
the NPC from staying at the optimum location with highest
rewards, which is the lower left and lower right fence corner
of the battlefield, we also added 50% heuristics to the reward
updates so that there will be 50% of chances the NPC will
explore the upper free boundary edge of the battlefield. The
destination of the NPC will be the grid location in the reward
table with highest reward.

For grid locations with holes, the reward will be -1000 and
each round Unity will pass the updated hole location to the Q
learning. If two grids are hit at the same time, both holes will
be captured by Unity and then passed to Q learning algorithm
for reward updates.

The upper free boundary will be assigned -1000 rewards.
Since the battlefield is protected by fences on the left, right
and lower boundary. We tried to adopt a strategy of the NPC
taking the same rewards when it arrives at the grid location
beside the fences and trying to take an action that goes towards
the fence. For example, if the NPC arrives at the grid right
above the lower fence and still tries to move downward, the
NPC will stay in its original location and take the same reward
at the original location. However, when testing this strategy

we realize that the NPC will try to run into the fences and
jitter a lot if the optimal strategy at that location is to take the
local reward and then move towards the fences. Therefore,
we changed the strategy to be -1000 rewards when the NPC
arrives at the edge and still tries to move towards the fences
(Figure 17), which means it is not recommended to the NPC
to move towards the fences when it’s close to the fences.

Fig. 17: Change Reward Strategy at Boundary Locations

D. The Optimal Route

The Q learning algorithm will get player location, NPC
location and hole locations from Unity during each round
of the game. Reward table will be updated based on these
parameters and the NPC will move towards the location with
the maximum reward in the reward table. Then the Q table will
be updated based on each action taken at each state. After
updating the Q table, the action with maximum Q value in
the Q table will be obtained. Then starting from the current
location of the NPC, the optimal path of movement will be
obtained by traversing the Q table with maximum Q values.

III. RESULTS AND ANALYSIS

Two example runs of Q learning algorithm are shown in
Figure 18 and 19. In the first example, the NPC is directed
to move to the lower right corner of the battlefield where the
maximum reward is located. And it determines the optimal
route policy based on the computed Q table. In the second
example, there is a hole right next to the NPC on its right,
different from the first example, the NPC is directed to move
downward first and then move to the lower right corner with
max reward.

IV. CONCLUSION AND FUTURE WORK

Overall, the agent we implemented using Q-learning does
well on dodging the bombs from the player. Under the current
game setting, the agent is able to find the path to get away if

9



Fig. 18: Q-learning Example 1

Fig. 19: Q-learning Example 2

such path exists. Meanwhile it also tries to avoid the holes
on the ground. Thus, the winning strategy for the human
player would be to play patiently to destroy the opponent’s
grid cell one after another, and trap the agent to a grid where
it cannot move anymore. Then the player can win by bombing
the standing target.

We would like to make the following improvements in the
future. First, features like NPC throwing bombs should be
added to make the game more amusing. Effort was put in but
till now we have not found an effective way to make the agent
dodge and attack at the same time, due to the natural contrari-
ety of the two actions. Second, the player and opponent agent
should be able to make free moves with various directions
rather than the current grid moves. It requires a re-design of the
Q-learning algorithm, as the size of Q-table will considerably
expand. Finally, the reinforcement learning module is better
incorporated into Unity. It is currently implemented in a
separated Python module, which results in a communication
delay. This avoidable delay should be eliminated for the seek
of performance and user experience.

REFERENCES

[1] G. Ilango, “Hand Gesture Recognition using Python and OpenCV,”
2017. https://gogul.dev/software/hand-gesture-recognition-p1 (accessed
Mar. 15, 2021).

[2] Unity, “Unity (software).” https://unity.com (accessed Mar. 15, 2021).

[3] Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose:
Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172–186,
2021, doi: 10.1109/TPAMI.2019.2929257.

[4] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh,
“Convolutional Pose Machines,” Jan. 2016, [Online]. Available:
http://arxiv.org/abs/1602.00134.

[5] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand Keypoint Detection
in Single Images using Multiview Bootstrapping,” Apr. 2017, [Online].
Available: http://arxiv.org/abs/1704.07809.

[6] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Sep. 2014, [Online]. Available:
http://arxiv.org/abs/1409.1556.

[7] Google, “MediaPipe” 2020. https://github.com/google/mediapipe (ac-
cessed Mar. 15, 2021).

[8] F. Zhang et al., “MediaPipe Hands: On-device Real-time Hand Track-
ing,” Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.10214.

[9] Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine
learning 8.3-4 (1992): 279-292.

10


